
Disabling Unwanted Functionality in
Binary Programs

Mohamad Mansouri
Thales SIX GTS / EURECOM

Jun Xu
University of Utah

Georgios Portokalidis
Stevens Institute of Technology

Abstract—Driven by the diversification of application scenar-
ios and the increase in market needs, software systems are rapidly
integrating new utilities and functionalities, usually presented as
new features. This frequently results in the problem of feature
creep: available features exceed the desired functions of users.
It also affects software attack surfaces, as more code carries the
risk of more vulnerabilities. To mitigate these security concerns
in binary programs, we propose F-DETECTOR and F-BLOCKER.
F-DETECTOR is able to detect and disable features activated by
most common types of inputs (command lines, file/network data,
graphical interfaces, and configuration options). Given a small set
of inputs that activate an unwanted feature and inputs (derived
by the former) that do not, F-DETECTOR combines dynamic
tracing and static analysis to detect the feature entrance — a
branch on the control flow graph that is only traversed when the
unwanted feature is activated. F-BLOCKER uses the discovered
feature entrance to disable features without affecting application
continuity. It does so by treating unwanted features as unexpected
errors and leveraging error virtualization to recover execution,
by redirecting it to appropriate existing error handling code.
We implemented F-DETECTOR and F-BLOCKER for the Linux
platform and evaluate it with 192 features (corresponding to 10
known vulnerabilities) from 19 programs. Results show that they
can detect and disable all features with few errors, affecting only
one of the tested applications, while they outperform previous
works.

I. INTRODUCTION

Software is continuously growing in terms of functionality
and size. This observation led Microsoft’s Nathan Myhrvold
to define his First Law of Software, stating that “software
is a gas” because “it expands to fit the container it is in”
[22]. However, many users never use a considerable part of
available functionality [34]. We can view the set on unused
features as bloat, which unnecessarily decreases the security
and stability of software. In fact, code size and complexity has
been linked to bugs by multiple studies [39], [17] and serious
vulnerabilities [1] have been discovered in rarely used features.

Eliminating code bloat can, thus, improve security because
it reduces the attack surface of applications by eliminating
code that may contain known and unknown vulnerabilities.
Debloating applications can be done in an aggressive, greedy
manner by eliminating all unused features. Many previous
works [12], [32], [26], [15], [18], [8], [35], [28], [6], follow
this approach. These works use test cases covering necessary
functionality to identify and remove code not needed, which
usually corresponds to a large number of features. The danger
is that they tend to remove required code that was not covered
by the test cases, such as environment, configuration, and error-
handling code.

Debloating can also be done by only eliminating specific
unwanted features, which has a lower chance of erroneously
removing required code. One strategy of doing so is to explore
using execution traces of test cases to remove the unwanted
feature, as demonstrated by Landsborough et al. [19]. How-
ever, their approach relies on the availability of complete
test suites of the unwanted feature and thus, are limited to
small, simple utilities (e.g., sha1sum). An alternative strategy
is to rely on users identifying seed functions uniquely tied
to the unwanted feature and run dynamic/static analysis to
either remove code connected with the seed functions [16]
or block execution flowing into them [5]. This line of efforts
require prior knowledge about the seed functions responsible
for implementing the unwanted feature, incurring high manual
efforts and cannot be applied by non-developers. Moreover,
regardless of which strategy we consider, the existing solutions
resort to terminating the application when the unwanted feature
is activated, failing to support the continuity of normal service
and avoid the potential damage.

In this paper, we present a system for disabling unwanted
features in binary applications without carrying the limitations
of existing solutions. The system runs two major components,
F-DETECTOR and F-BLOCKER, to achieve its goal.

F-DETECTOR implements a new method for detecting a key
control-flow branch in the application that corresponds to the
activation of an unwanted feature. F-DETECTOR operates in a
semi-automatic way. Users provide a small set of inputs that
activate the unwanted features and then follow our guidelines
to minimally mutate the inputs for generating new ones that
avoid the unwanted feature. To detect the feature-activating
branch, F-DETECTOR uses execution traces from both user-
provided and mutation-produced inputs. It combines the differ-
ences observed in the traces with information obtained through
static analysis of the application to determine a control-flow
branch that dominates the feature as its entrance.

F-BLOCKER models the unwanted feature as an unantici-
pated fault and borrows concepts from software dependability
research to handle it gracefully. Technically, F-BLOCKER uses
the output of F-DETECTOR and dynamic information to first
decide a function that can work as a rescue point or precisely,
a location where execution can rollback and an error can be
raised to activate built-in error-handling. F-BLOCKER’s run-
time component then instruments the application to deploy
the rescue point. Once the feature entrance is hit, F-BLOCKER
rollbacks the execution to the rescue point and triggers the
built-in error handling to disable the unwanted feature safely.

While our work is not the first to target feature removal, it
brings several unique, widely desired advantages. First, it only

Application code

Neutralized vulnerabilities

xx
Unknown vulnerabilities

Other functionalityRequired functionality

Fig. 1. Eliminating vulnerabilities through debloating.

requires a few inputs and some basic understanding of target-
software features to minimally mutate them, decreasing the
burden placed upon and required expertise of users. Second, it
only disables a single control flow edge. Identifying this edge
is more tractable in comparison to finding all the code blocks
corresponding to a feature, also significantly reducing the
potential side effects to other functionality. Third, it is designed
in a way not limited to a specific type of program or feature.
It can handle features activated by network requests, graphical
user interfaces (GUI), file formats, command-line arguments,
etc. Finally, it ensures the survival of the application, which
is crucial for server programs and larger client applications
because crashes can cause data loss, beyond inconvenience.

We have implemented prototypes of F-DETECTOR and F-
BLOCKER, which have been evaluated using 192 features from
19 applications (including command-line utilities, servers, and
GUI applications). To our knowledge, this is the most exten-
sive experimental evaluation of a system removing unwanted
features. We manually verified the evaluation results. We
found that our system is able to detect the correct feature
entrance for most of the tested features, regardless of the
inputs and mutations. Only when handling a small set number
of features, it presented errors because low-quality inputs or
mutations are selected. In addition, our system disables 10
known vulnerabilities rooted within the tested features.

In summary, we make the following contributions:

• We design and implement a system that is able to semi-
automatically identify all types of program-features in
stripped binaries and disable them without affecting program
availability.

• We define an algorithm for automatically identifying the
control-flow edge in a program that dominates a targeted
feature, based on dynamically profiling an application with
user-selected inputs and static analysis of its code.

• We define a set of guidelines to assist users in selecting the
inputs to profile the application.

• We develop an algorithm for automatically defining the self-
healing primitives (i.e., rescue points) to disable features
while maintaining the continuity of normal service.

• We evaluate our system using 19 applications and 192
features with 10 associated vulnerabilities (CVEs). Our
results show that it can disable all features and insulate the
application from the vulnerabilities.

II. BACKGROUND AND MOTIVATION

A. Reducing Attack Surface through Debloating

Large and complex software is more likely to contain bugs
and vulnerabilities [39], [17], hence, disabling or removing
the usually numerous but rarely used features [34] reduces
its attack surface. By removing or ensuring undesired func-
tionality is unreachable during execution, we neutralize any

Other functionalityApplication code

Unknown vulnerabilities

Required functionality
Test cases
coverage

Disabled functionality

Over-debloating Under-debloating

Fig. 2. Debloating based on retaining wanted functionality.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

switch (p - m) { /* p - m equals the length of the HTTP method string */

... /* other switch cases (omitted) */

case 3:

if (ngx_str3_cmp(m, 'G', 'E', 'T', ' ')) {

r->method = NGX_HTTP_GET;

break;

}

if (ngx_str3_cmp(m, 'P', 'U', 'T', ' ')) {

r->method = NGX_HTTP_PUT;

break;

}

break;

...

}

...

return NGX_HTTP_PARSE_INVALID_REQUEST;

...

GET method
PUT method
GET & PUT common
Others

Execution flow

ngx_int_t ngx_http_parse_request_line(...)

Fig. 3. Code snippet from the HTTP method parser of NGINX v1.3.9 for
checking the method of a request. The edge 8 → 9 controls the activation of
the PUT-method functionality, which in this instance, is an unwanted feature.

vulnerabilities rooted within it, as illustrated in Fig. 1. This is a
proactive measure that eliminates known, but more importantly
unknown (i.e., zero-day) program vulnerabilities.

Eliminating unwanted functionality, or features, can be
often done during compilation, through configuration op-
tions made available by the developers. For example, Debian
GNU/Linux offers various versions of the popular VIM editor,
with vim-tiny including only about twelve features out of
more than a hundred in the full version. However, some
applications may not include options for disabling all unwanted
features or source code may not be available (e.g., proprietary
software). To address these issues, recent research has focused
on automatically debloating software by removing or disabling
unwanted functionality. The produced approaches can be clas-
sified into two categories: the ones that aim to identify required
functionality and eliminate all other functionality, and the ones
that aim to disable specific unwanted features, one at a time.
We discuss them below.

B. Different Debloating Strategies

1) Retaining Wanted Functionality: Works in this direc-
tion [12], [32], [26], [15], [18], [8], [35], [28], [6] are based on
profiling applications using test cases, or inputs, corresponding
to required functionality. Based on the code covered when exe-
cuting with these training inputs, they estimate the greater code
area related to the required functionality. Code corresponding
to other functionality is erased or disabled. This strategy can
potentially maximize the amount of code and vulnerabilities
removed.

2

TABLE I. EVALUATING RAZOR WITH COREUTILS. INDICATES WE
DISCOVERED A PROBLEM AND # THAT WE DID NOT.

Application Debloating
Over Under

bzip2-1.0.5 # #
chown-8.2 #
date-8.21 #
grep-2.19 #
gzip-1.2.4 # #
mkdir-5.2.1 #
rm-8.4
sort-8.16 # #
tar-1.14 #
uniq-8.16 #

2) Disabling Unwanted Functionality: Debloating can also
be done by eliminating specific undesired features. One way to
achieve this is to rely on users identifying seed functions, key
to the targeted feature, and using dynamic and static analysis
to either remove all code associated to the feature [16] or block
execution flowing into it [5]. Another way is to remove features
using run-time profiling. For instance, Landsborough et al. [19]
collect instruction traces with test cases for both wanted
and unwanted features. They identify code that was activated
during runs with the unwanted-feature inputs but not with
wanted-feature inputs. By overwriting these code segments
with no-op instructions (nop), the corresponding functionality
is disabled.

C. Retaining Functionality v.s. Disabling Functionality

Functionality debloating is hard to do because it often
incurs two problems:

Over-debloating leads to erroneously disabling code associ-
ated with required functionality, effectively breaking appli-
cations when debloated code paths are activated.

Under-debloating leaves some unwanted functionality in the
program. This is seemingly more innocent, however, it may
introduce a false sense of security. For instance, when a new
vulnerability is discovered, affecting a feature assumed to
have been completely disabled. Unless users explicitly test
for a feature, under-debloating may have left a now known
vulnerability in their application.

Retaining wanted functionality has been facing challenges
to mitigate the two problems above. Reviewing specific ap-
proaches, CHISEL [12], a notable recent work, takes inputs
that offer broad coverage of wanted functionality and leverages
reinforcement learning to estimate required code. Follow-up
studies [26] show that CHISEL is prone to over-debloating
and, in extreme cases, it can even introduce vulnerabilities in
programs due to removing checks. More recently, RAZOR [26]
defines a set of heuristics for expanding the code paths exer-
cised by inputs corresponding to desired functionality, aiming
to detect the additional code needed. While less aggressive than
CHISEL, our experiments with the prototype made publicly
available by the authors confirmed that RAZOR can result
in both over- and under-debloating. Table I summarizes the
findings of our experiment with RAZOR, where the training

and testing inputs from the original paper are used to detect
over-debloating and new testing inputs for unwanted features
are included to identify under-debloating.

Underneath the difficulties for retaining wanted function-
ality to avoid over- or under-debloating, there are some fun-
damental reasons. Driven by the principle of only keeping the
wanted functionality, this strategy has to remove as much
unneeded code as possible. Without perfect inputs to cover all
the code needed by the desired functionality (which is typically
the case in practice), removing a large amount of code leads
to a higher chance of errors (i.e., over-debloating).

In contrast, disabling unwanted functionality focuses on
removing specific functionality. Principally, it only has to trim
the minimal code mandated by the unwanted functionality.
In the general sense, removing less code reduces the chance
of errors and thus, disabling unwanted functionality is a better
strategy to avoid over-debloating. On the other side of this
argument, removing less code in general indicates a higher
chance of retaining the unwanted functionality. Hence, dis-
abling unwanted functionality can be more inclined to under-
debloating. Fortunately, recent literature [16], [5] has unveiled
that a functionality is often uniquely tied to a small piece of
code (e.g., a key function), and preventing execution to such
code can validly disable the functionality. That is, coupling
with approaches to detecting the feature-associated code, dis-
abling unwanted functionality can reduce under debloating.

To sum up, disabling unwanted functionality is better
principled to avoid over- or under-debloating, which motivates
us to follow this strategy to perform debloating.

D. Limitations of Existing Solutions to Disable Functionality

We are not the first attempting to disable unwanted func-
tionality. However, existing solutions [16], [5] in the area are
fundamentally limited in two aspects.

First, they rely on manual annotation or understanding (at
least parts of) the implementation to detect feature-associated
code constructs, which is highly complex or even impossible
on binaries and cannot be applied by non-developers. Second,
they tend stop unwanted functionality by simply terminating
the execution (e.g., replacing all unwanted code with an invalid
instruction [19]). This makes them impractical for servers or
applications where data loss will occur when an unwanted
feature is used (e.g., image editing applications).

In this paper, we aim to provide a novel functionality-
removing solution to address the above two limitations.

III. DESIGN OVERVIEW

A. Key Insight and High-level Idea

We aim to disable unwanted functionality in binaries. Our
key insight is that the functionality in programs, assuming it
does not always execute independently of the input, is often
activated or controlled by a control flow branch.

Conditional branches are often used to set up state variables
to control the desired functionality. Fig. 3 shows an example.
The conditional branch from line 8 to 9 is only executed
for HTTP requests with the PUT method. The request’s

3

1 MagickBooleanType RegisterStaticModule(...) {
2 ...
3 if (MagickModules[i].registered == MagickFalse)
4 /* An indirect call to the TIFF module is made using

index i on dispatch table MagickModules */
5 (void)(MagickModules[i].register module)();
6 ...
7 }
8 ModuleExport size t RegisterTIFFImage(void) { ... }
9 ModuleExport size_t ... /* other modules: PNG, JPEG, etc. */

Listing 1. The Branch handling different image types in IMAGEMAGICK.

state update on line 9 and then leads to the execution of
PUT-related functionality in NGINX. Therefore, disabling
this edge (e.g., by redirecting it to an aborting instruction)
would disable the support of PUT-method in NGINX without
having to identify all code blocks used in its implementation.

Indirect branches, like indirect calls, are another popular
way to activate functionality. Typically, code before the
indirect branch sets the target to point to code implement-
ing the desired functionality. Once the branch is hit, the
functionality will start executing. Listing 1 presents such a
case. To process an image in the IMAGEMAGICK viewer
and editor, the appropriate module is invoked through an
indirect call to a different function depending on the image’s
type. For instance, the call on line 5 will only target
RegisterTIFFImage() for TIFF images, and disallowing
it will disable TIFF-related functionality.

We exploit the above insight to disable unwanted function-
ality or features (F). The idea is to identify the first control-
flow edge, which we call feature-specific edge (FS-edge), that
controls an unwanted feature and block this edge. Similarly to
prior work, we focus on disabling functionality that does not
always execute, but instead, its activation depends on the inputs
provided to the program. To clarify our scope, we consider any
data that can be used by the program as inputs. Specifically,
we consider the following inputs whose value represents
different features: command-line options, network-protocol
and file-format fields, configuration variables stored in files,
shell environment variables, and clicking on graphical user-
interface (GUI) elements. In the rest of this paper, we denote
inputs that lead to the activation of an unwanted feature F as
IF and other inputs as ¬IF .

B. Disabling Unwanted Features with F-DETECTOR

To detect the FS-edge corresponding to an unwanted fea-
ture, we develop F-DETECTOR. F-DETECTOR introduces a set
of heuristics to identify the FS-edge that can disable F in
binary programs. The heuristics operate on both statically and
dynamically collected data, such as the program’s control-flow
graph (CFG) and execution traces. Its design follows Fig. 4,
which we highlight below.

1) Preparing Test Cases: Similarly to the approaches dis-
cussed in §II-B2, we collect execution traces using test cases
from two groups: IF and ¬IF . By analyzing the differences
between the two groups, we can greatly reduce the search
space for the FS-edge, as it is bound to be an edge that
behaved differently based on the test case group. However,
as prior works caution us, randomly selecting test cases can

lead to problems. Throughout empirical experimentation, we
found that the edge search space tends to become smaller,
when inputs in IF and ¬IF are similar.

We incorporate the above finding in F-DETECTOR by intro-
ducing a set of guidelines for selecting ¬IF test cases based
on IF , through minimal mutation M(). It involves making
small, directed changes to key parts of the input. For instance,
assuming IF includes the HTTP request <PUT /test.html
HTTP/1.1> to activate the unwanted PUT method from Fig. 3,
our minimal-mutation strategy dictates that we should only
replace the PUT field with other valid options to gener-
ate ¬IF , such as <GET /test.html HTTP/1.1> and <POST
/test.html HTTP/1.1>. We have also developed similar
guides for applying this strategy on the other popular types
of inputs that F-DETECTOR handles, summarized in Table II.

Moreover, we use this minimal-mutation process to pro-
duce multiple different sets of ¬IF , allowing us to apply
our FS-edge-detection multiple times. Execution traces with
different ¬IF can potentially produce different data, which
further strengthens FS-edge detection and avoids debloating
errors.

2) Detecting FS-edges: The FS-edge detection process is
applied on each pair of IF (one) - ¬IF (multiple) traces. It
includes the following steps:

❶ we start by filtering out edges, keeping only edges taken
by all the test cases in IF but never by test cases in ¬IF .
Otherwise, either F remains alive or other features will be
affected;

❷ we eliminate edges that come from a utility function
(e.g., strcmp from libc) because such functions intend to
support a large variety of features;

❸ if a remaining edge corresponds to a conditional branch
(cbr) and the code at the destination can only be reached
through this edge, we consider the edge a candidate FS-
edge. Otherwise, we discard the edge. The goal is to pick
cbr that uniquely controls execution of its destination, thus
offering a better probability to fully disable the unwanted
feature. Similar heuristics apply for other types of edges
(§IV);

❹ we pick the candidate FS-edge that occurs earliest in the
trace. If the FS-edge is chained with other cbr-based FS-
edge candidates, we consider the deepest one in the chain as
the final FS-edge. Otherwise, we simply pick the earliest FS-
edge. Prioritizing the earliest chain of FS-edge candidates
helps block more feature-related code. Considering the
deepest one in a chain is to accommodate complex condition
checks where the shallower checks control feature groups
and the deeper ones control individual features (e.g., the
example in Fig. 3 first checks for methods of the same length
and then the specific method). The benefit of doing so is a
reduction of impact on other features.

How does our algorithm work with the example in Fig. 3?
If the PUT method is unwanted, IF will include a PUT-
method request and we can use a GET-method request as
¬IF . The execution traces collected will include the following
conditional branches:

PUT: 1 → 3, 4 → 8 → 9, 10 → 14
GET: 1 → 3, 4 → 5, 6 → 14

4

Edge selection

Jump-table heuristic
Indirect-call heuristic

Cond.-branch heuristic

F-DETECTOR

FS-edge

BINBINBIN

Application

¬I𝓕𝑢

Other
test cases

¬I𝓕𝑢¬I𝓕

𝓜(•)

CFG extraction

IDA

Trace processing

Normalize
Diff

Filter
Trace collection

Pin

Majority
voting

I𝓕

Feature
test cases

Call-trace
extraction

Pin

Self-healing
system

Reassure
Assure

RP generation

CFG extraction (IDA)
Return value analysis
Dominance analysis

Error-code detection

Fault injection (Pin)

I𝓕

BINBINBIN

RP

F-BLOCKER

Fig. 4. Approach overview. Given a set of test cases, including both IF and ¬IF inputs, F-DETECTOR attempts to detect the control-flow edge (FS-edge)
responsible for activating a targeted unwanted feature F . F-BLOCKER generates a rescue points (RP) for an FS-edge, which can be used by a software self-healing
system to disable F without affecting survivability.

Our algorithm will exclude 1 → 3, 4, following ❶, and 9, 10 →
14, following ❸. Edge 3, 4 → 8 is initially picked because of it
is the earliest in the trace. Finally, we decide that the FS-edge
is 8 → 9, as it is chained after 3, 4 → 8. Blocking this edge
off can disable the PUT method without hurting any other.

The algorithm is robust and will still work if a different
method, like POST, is used in ¬IF . In that case, the switch
would jump into another location, not shown in the figure.
1 → 3, 4 would be initially picked due to ❷-❹. Finally, ❹
would pick edge 8 → 9 because it is the last edge in a chain
of valid conditional branches.

3) Majority Voting On FS-edge: F-DETECTOR incorporates
another mechanism, majority voting, to mitigate potential
errors in FS-edge detection caused by noise in the execution
traces. For example, if ¬IF is significantly different from
the corresponding IF it was derived from through M(). By
producing multiple FS-edges, using different ¬IF sets, we
can pick the most frequently detected FS-edge. F-DETECTOR
can also refuse to emit an FS-edge, if multiple candidates are
found, to avoid the over- and under-debloating issues described
in §II. However, the FS-edge candidates could still be used
to guide analysts and help them discover the correct FS-edge
manually.

C. Disabling F and Exploring Survivability with F-BLOCKER

Given an FS-edge, we can easily disable F by terminating
the application when the edge is traversed. We can accomplish
this by overwriting the FS-edge’s destination, which is also
the only edge leading to it, with a single-byte instruction like
int3. This approach of disabling F is more robust than prior
works that overwrite large “swathes” of code, since we literally
only modify a single byte. However, this is still undesirable for
servers and applications where data-loss may occur because of
an uncontrolled exit.

How can we provide continuity of service when the disabled
functionality is triggered? Our insight is that we can treat
disabled functionality activation, as an unanticipated fatal
error. We can then leverage techniques introduced by works
on software self-healing to recover from these errors [33],
[25]. Specifically, these systems introduce rescue points (RP)
to enable software to handle unanticipated faults. RPs are
functions returning error code(s) that the application already
handles. When an unknown error occurs, execution is restored

to an appropriate RP and a valid error code is returned,
recovering execution by virtualizing and repurposing existing
error-handling code.

How do we leverage rescue points? In the example of
Fig. 3, the unwanted feature (PUT method) is contained in
ngx_http_parse_request_line(), which we can use as
a RP. Upon entry to the RP, a checkpoint (or snapshot) of
the process or system state is created by the self-healing
system. Traversing the FS-edge (8 → 9) will trigger a
fault, which in turn will cause a rollback to the checkpoint
state. Finally, the RP will return with the valid error code
NGX_HTTP_PARSE_INVALID_REQUEST to its caller, so that
NGINX can handle the error and keep operating. If the FS-
edge is not hit, the checkpoint state is released upon return of
the RP function.

To leverage software self-healing, we introduce F-
BLOCKER, a system that automatically attempts to define a
rescue point that can be used to recover from the injected error
raised by a disabled feature. F-BLOCKER relies on dynamic
and static analyses to find a function that can serve as a rescue
point. The generated RP can be used with existing systems,
such ASSURE [33] and REASSURE [25], for self-healing.

IV. F-DETECTOR

Fig. 4 depicts a high-level overview of F-DETECTOR. To
disable F , it requires three inputs: application binaries, a set
of test cases IF that activate F , and multiple sets of ¬IF ,
produced by minimally altering IF , that do not activate F
(i.e., M(IF) = {¬IF1 ..¬IFn}). F-DETECTOR runs using IF
and each of the generated ¬IF to determine multiple FS-edge
candidates, one for each ¬IF . It then uses majority voting
among the candidates to pick a single FS-edge.

The rest of this section describes the various components
of F-DETECTOR in detail: §IV-A presents our guideline (rules
of thumb) minimally mutating different types of IF inputs;
§IV-B describes how we trace and process the collected
information to obtain an initial set of edges that include the
FS-edge; finally, §IV-C describes our algorithm for identifying
the candidate FS-edge using a group of heuristics.

A. Minimal Mutation of Feature Inputs IF

F-DETECTOR requires both inputs triggering an unwanted
feature (IF) and inputs that do not (¬IF) for tracing. To

5

TABLE II. MINIMAL-MUTATION GUIDELINES SUMMARY FOR GENERATING ¬IF BASED ON IF AND INPUT TYPE.

F Activation Method Example Test Case (IF) Guideline Example Results (¬IF)
Command-line option zip f.zip file -T -TT=val Replace option -TT →{-UN, -bs, -Z, . . . }
Protocol field PUT /test.html HTTP/1.1 Replace keyword PUT →{GET, POST, . . . }
File format display im.gif Convert file im.gif →{im.jpg, im.png, . . .}
Configuration variable perl startup = do ’/etc/ex.pl’ Remove option
Environment variable env x=’() { :;};’ Change assignment ’() { :;};’ →{’ ’, 1, . . .}
GUI actions Click on action Af under menu Mj Replace with action under Mj Af →{ Ai, for i ̸= f }

prepare IF , users can just pick a (small) set of random test
cases that activate the unwanted feature. To prepare ¬IF , we
found that a practical way is minimally mutating IF such that
F is not activated. For instance, to disable the HTTP PUT
method in the NGINX server (Fig. 3), users can prepare a single
PUT request using utility like curl. They can then replace the
method passed to the utility with other valid ones to produce
IF , as shown below:

curl -X PUT http://localhost/file
↓

curl -X POST http://localhost/file
curl -X MOVE http://localhost/file
curl -X DELETE http://localhost/file

We established a set of guidelines on how popular input
types handled by F-DETECTOR can be minimally mutated, by
analyzing how the various applications we experimented with
handle them. We summarize them in Table II and describe
them in detail below:

Command-line Options Common in command-line pro-
grams, options are used to activate certain functionality of
the program. Typically, a parser first processes them to
update state accordingly (e.g., by asserting a variable). Linux
programs commonly have both short and long version of
options (e.g., -R is equivalent to --recursive in chown),
so at least two test cases can be defined in IF . We can
minimally mutate the targeted option by replacing it with
other similar options (e.g., a long option with another long
option) without modifying anything else. In applications
with many command-line options, we can easily generate
many different set of ¬IF .

Protocol Fields Many features in servers are activated based
on the requests received. The server parses the request and
activates some functionality based on the protocol field
values in the request (e.g., the PUT method in HTTP). We
should minimally mutate the (usually) single-input IF by
replacing the protocol field with other valid values, avoiding
modifications to the common parts of the request (there can
be differences mandated by the new field value). Multiple
sets of ¬IF can be generated based on alternative field
values.

File Formats Applications that handle (various types of) files
parse them and based on the file format (or specific fields
in it), activate certain functionality. This is similar in many
ways to protocol fields. For example, image viewer appli-
cations support multiple image file types and each of them
could be considered as a separate feature. In this case, IF
contains one or more images of the unwanted format. We
minimally mutate them by converting them to other formats
(e.g., using a converter or the application itself). Depending

on the image format and conversion capabilities, multiple
test cases can be generated for ¬IF . We avoid randomly
selecting the files in IF and ¬IF , as there can be differences
in metadata, or files may require additional functionality,
unbeknown to us.

Configuration Variables Variables in configuration files can
also control the use or not of a feature. For instance, when
defined, the variable perl at start enables the Perl
interpreter in the EXIM mailer to run the script assigned to
the variable. In such cases, we can simply remove the given
variable from the configuration to minimally change an IF
to ¬IF . If the variable can be assigned distinct values, we
can instead replace the value assigned to the variable with
other valid options.

Environment Variables Can be treated similarly to configu-
ration variables.

GUI Actions In GUI applications, many features are triggered
by a user action, delivered by a keystroke (e.g., shortcuts)
or mouse click (e.g., clicking on a menu item). This causes
the execution of a callback from the GUI framework being
used, which will eventually execute the application code
implementing the requested functionality. IF should include
inputs corresponding to various activation methods, like
clicking on a menu item and using its shortcut. To minimally
mutate menu-item clicks, we can click on a different item
under the same menu. For shortcuts, we can use a different
keyboard shortcut. We can easily generate different sets of
¬IF for most GUI applications, as they usually include
numerous actions.

B. Execution-Trace Collection and Processing

F-DETECTOR collects execution traces of the application,
which compromise the address of every executed basic block
(BBL), with basic blocks being sequences of instructions
that end with a control-transfer instruction. By collecting and
comparing IF traces against ¬IF traces, we aim to identify
a small set of control-flow edges, which will include the FS-
edge. These edges will satisfy the following properties:

• They are present in every trace collected with IF .
• They are never present in traces collected with ¬IF .

1) Trace Normalization: Each trace may comprise multiple
sub-traces, one for each thread of execution. Each sub-trace is
identified by its thread ID tid, including all BBLs executed by
the thread in the order they run. We first process the traces by
normalizing them. For each sub-trace, we record the unique
control-flow transitions performed by the thread, as a source–
destination pair of BBLs (src-dst). We also include the posi-
tion (pos) of the first appearance of each BBL and the number

6

of its appearances (num) in the sub-trace. All sub-traces are
eventually merged into a single trace containing tuples in the
form of (src, dst, tid, pos, num), which correspond to unique
edges across threads. tid, pos and num correspond to those
of the thread sub-trace where they first appeared in. In the rest
of this section, we will refer to normalized traces as profiles.

2) Profile Diffing: Next, we compare the collected profiles
to obtain a first set of control-flow edges that will include
the FS-edge we desire. We first generate set C by taking
the intersection of all (src, dst) pairs in IF profiles, which
includes all the CFG edges that were taken consistently in all
executions where the feature is activated. Second, we generate
set E by taking the union of all edges in ¬IF profiles. Finally,
we subtract E from C to obtain a set without any edges
appearing in ¬IF profiles.

3) Utility-Function Filtering: Applications almost always
use utility functions, like string-comparison functions, from
libraries like libc. Their internal code typically does not
uniquely relate to any F , hence, the FS-edge will unlikely be
located in them. Therefore, we exclude such edges by filtering
out ranges that correspond to utility libraries, like libc or
other user-configured libraries.

1 size_t CopyMagickString(char *dest, char *src, size_t length){
2 ...
3 for (n=length; n > 4; n-=4){
4 *q=(*p++);
5 if (*q == ’\0’) return((size_t) (p-source-1));
6 q++;
7 *q=(*p++);
8 if (*q == ’\0’) return((size_t) (p-source-1));
9 q++;

10 }
11 ...
12 }

Listing 2. A utility function from IMAGEMAGICK (V-7.0.9-5).

Applications may also include built-in utility functions. To
eliminate them, we exploit the observation that they are called
frequently even for basic workloads and discard edges that
occur multiple times. For example, in IMAGEMAGICK function
CopyMagickString (Listing 2) is called multiple times and
contains a loop (causing internal edges to appear multiple
times), which leads to exclusion.

C. FS-Edge Detection

To detect the FS-edge using the set of edges identified in
the previous stage, we have devised a set of heuristics, based
on how programs commonly “decide” to activate functionality.
They allow us to overcome the limitations of working with
execution traces obtained with a small number of inputs, which
may include edges that are also associated with functionality
other than F . We start by grouping consecutively executed
edges into packs. That is, each pack contains edges where the
destination BBL of the first edge is the source BBL of the
second one, and so on. We go over these packs in order, from
earlier to later executed edges, searching for the earliest pack
that contains an FS-edge according to our heuristics.

1) Detection Heuristics: FS-edges correspond to condi-
tional program control flows, where F-related code is executed
conditionally to input. C and C++ programs use three common
mechanisms to implement such logic:

• if-then-else statements: in binary code, they are imple-
mented by a conditional branch (cbr) instruction, like je in
x86 binaries.

• switch statements: they can be implemented either as a
sequence of cbr or using an indirect jump (ijmp) instruction
(e.g., jmp rax in x86) using pointers from a compiler-
generated jump table, containing one entry per switch case.

• Function pointers: they are implemented as indirect calls
(icall) or indirect jumps, often using a developer-provided
function table.

We have developed three heuristics based on the above
constructs, which we apply on each pack of edges. If no FS-
edge is detected, we proceed to the next pack, and if none are
left we emit no FS-edge. Our heuristics are the following:

(i) Jump-table heuristic: when an ijmp that corresponds to a
switch jump table is found, we treat it as a cbr. This heuristic
targets applications that use a switch statement to conditionally
activate F , which was implemented by the compiler using a
jump table. Our example in Fig. 3 contains one such switch
(line 1) to check different method-string lengths. To determine
if an ijmp is part of a switch instead of an indirect call, we
utilize the IDA Pro disassembler [13] to analyze the code and
detect jump tables and their corresponding ijmp.

(ii) Indirect-call heuristic: if the pack starts with an icall
or a non-switch ijmp edge, we select that as FS-edge. The
heuristic captures applications that use a dispatch table con-
taining pointers to functions associated with different features.
Usually, an index value is used to obtain the appropriate pointer
which is then called. Listing 1 shows one such use of a
dispatcher table in the IMAGEMAGICK application for loading
different image-format processing modules.

(iii) Conditional-branch heuristic: if the pack starts with a cbr,
we consider the application may be using an if-then-else
or switch to activate F . Applications frequently link mul-
tiple BBLs, testing for increasingly specialized conditions.
An example of such a pattern exists in our NGINX example
(Fig. 3), where a switch is used to first test for method-string
length (1 → 3), followed by if-then statements testing for
specific method names (4 → 8 → 9). To handle such cases we
recursively process all edges in the pack, until a stop condition
is reached. If at least one cbr was found before then, it is
returned as FS-edge. The stop conditions are:

• the end of the edge pack is reached;
• a function-call or return edge is encountered, signifying that

the chain of cbrs has ended;
• an edge to a BBL with multiple incoming edges occurs. This

rule aims to exclude cbr that lead to code which could also
be executed through other paths. Such paths may exist, even
if they have not been observed during tracing. For example,
in Fig. 3 the break on line 10 corresponds to a direct
jump to the end of the switch statement, which is also
accessible by other cases. To identify such BBLs, we utilize
IDA to statically obtain the partial CFG of the application
and determine if there are multiple incoming edges. The
goal of this rule is to enable a cbr-based FS-edge uniquely
controls execution of its destination, increasing the chance
of completely blocking the unwanted feature.

7

2) FS-Edge Detection in the Presence of Threads: Our
algorithm expects that edges in each profile are ordered.
However, absolute ordering in multi-threaded applications is
very challenging, especially on multi-core architectures where
threads execute in parallel. To address this issue, we apply our
approach to the profile of each thread separately, which may
identify one FS-edge for each thread of the application. We
assume that the FS-edge that executed first caused the ensuing
ones. To select it, we re-run the application with one of the
inputs in IF , while we instrument it to record when FS-edges
are traversed.

3) Majority Voting: F-DETECTOR applies the FS-edge de-
tection algorithm multiple times using the IF set and each
of the ¬IF sets. This results in multiple FS-edge candidates
being initially generated. At this point, we have the following
options: (i) be strict and only use the FS-edge if all candidate
agree (unanimous decision), (ii) use majority voting and select
the FS-edge (if any) that the majority of runs produced. In the
evaluation, we use option (ii).

V. F-BLOCKER

F-BLOCKER automatically attempts to define a rescue point
that can be used to recover from the injected and unexpected
error which is attempting to execute F . This rescue point
can be used with an software self-healing system, such as
ASSURE [33] or REASSURE [25]. The RP is a function that
must satisfy the following criteria:

• P1: Every possible path leading to the FS-edge includes
the function, so we can always “rescue” the application.
For instance, the function containing the FS-edge always
satisfies this criterion.

• P2: The functions returns an error code, which is handled
by its callers. This is a key piece of error virtualization.

• P3: It is near the FS-edge to reduce overhead.

Fig. 4 presents an overview of F-BLOCKER’s components.
They are discussed in detail in the sections below.

A. Call-Trace Extraction

We start by running the application with the feature-
triggering inputs that were used with F-DETECTOR (IF). In
each run, we record several information including pairs of
function callers-callees, function returns and potential return
values (e.g., the value of register RAX), active memory map-
pings when returning, and system calls performed, along with
their return values. Finally, when the FS-edge is hit, we record
the call stack at that point and terminate.

B. Rescue-Point Generation

1) Dominance Analysis: To satisfy P1, the RP must be one
of the functions in the call stack obtained in the first step. To
determine which functions are eligible, we extract the CFG of
the application to determine domination relations. Specifically,
the functions that dominate the function containing the FS-
edge (i.e., all execution paths go through them) are RP
candidates. If a function in the call stack is address taken (AT),
meaning the program contains a reference (pointer) to it, our
analysis does not attempt to resolve all potential callers, as

ngx_int_t ngx_http_parse_request_line(...) {
... /* error retval = { ?? } */

int3 r->method = NGX_HTTP_PUT;

...

void ngx_process_events_and_timers(..)

void ngx_http_process_request_line(...)
void ngx_http_init_request(...)

ngx_int_t ngx_epoll_process_events(...) /* error retval = { -1 } */

RP

Fig. 5. Rescue Point for Disabling NGINX’s PUT method.

this is impossible to do accurately. Instead, we rely on call-
trace data to assign the callers (usually one) based on what
was observed during tracing. This may be an underestimate,
however, if one of the callers of an AT function is finally
selected as an RP, manual analysis can be employed to try
and determine if P1 is indeed satisfied before deploying.

2) Return-Value Analysis: For each of the eligible func-
tions, we try to automatically determine: (i) if they return
a value (e.g., not a void return type), (ii) which values
correspond to errors, and (iii) if they are handled by the
application. Functions that satisfy these criteria also satisfy
P2. Binary applications return values according to the calling
conventions used, which in x86 architecture, it is commonly
done through the EAX/RAX registers. We statically analyze
applications to find how these registers are used to establish
(i) and (iii), as follows:

• For functions that are not address-taken, we analyze all their
callers to determine whether EAX/RAX is used, right after a
call returns, without being set first. This indicates they use
a value set/returned by the function.

• For AT functions, since we cannot discover all callers,
we instead use the callee’s code. Specifically, we examine
if every execution path within the function sets EAX/RAX
without using (reading) its value before returning. This
indicates that the function is always returning a value.

For establishing returns values that signal errors, namely
(ii), previous research has explored static analysis based ap-
proaches [14], [38]. These works, however, often involve in-
ferences that may undermine the safety of our system. Instead,
we adopt a dynamic approach inspired by two observations:
functions returning pointers often return NULL to indicate an
error and functions issuing system calls often test for and return
an error code to their callers. Based on these and the values
observed during tracing, we define the following two rules:

• if the return value lies in the address range of mapped
memory, we consider it to be a pointer and a valid error
code is NULL.

• otherwise, we assume the function returns integers and we
use the method described below to determine error codes.

Error-Code Detection For functions that return integers and
make system calls, we employ fault injection at the system call
level to expose return values that correspond to errors. We do
so by re-running the application with IF , while intentionally
failing all the system calls in the target function. If its return
value changes in comparison to the previous run, we consider
this new value an error code.

3) RP Selection: Finally, after collecting all functions
satisfying P1 and P2, we select the one closest to the FS-

8

TABLE III. APPLICATIONS AND FEATURES USED IN EVALUATION.

Application
(Version)

Feature Group
(Input format)

Unwanted Feature
(CVE)

IMAGEMAGICK

IM (7.0.9)

Image Support
(file)

TIFF / SVG / PNG / JPEG / GIF
(2019-15141, 2019-13136)

Image Edit (UI) Crop / Chop / Flop / Flip / Rotate / Shear

EVINCE

(3.22.1)
File Operation (UI) Print / Open / Save / Copy / Properties

BUSYBOX

(1.22.0)
Applet Command

(cmd line)

Wget / Bunzip2 / Gunzip / ... (102 more)
(2018-1000500, 2018-1000517

2017-15873, 2015-9261)

EXIV2
(0.27.1.19)

Image Edit
(cmd line)

Insert / Remove / Print / Extract / Rename

ZIP

(3.0)
Zip Operation

(cmd line)
-TT / -ds / -UN / -b / ... (5 more)

(priviledge escalation [4])

NGINX

(1.3.9)

Http Method
(network data)

PUT / GET / MOVE / POST

Transfer Encoding
(network data)

Chunked Encoding
(2013-2028)

PROFTPD
(1.3.5e)

FTP Action
(network data)

CPFR / CPTO / CHGRP / CHMOD
(2015-3306)

EXIM

(4.86)
Startup Script

(cmd line/env. var.)
-ps & config file (2016-1531)

BASH

(4.3)
Shell Function

(env. var.)
Define functions with env. var.

(2014-6271)

edge and its associated error code as RP. For example,
for disabling NGINX’s PUT method, F-BLOCKER defines
function ngx epoll process events and return value
-1, as a rescue point. As shown in Fig. 5 this func-
tions satisfies all three properties (P1-P3). While function
ngx_http_parse_request_line would be an ideal RP, it
does not perform any system calls, which does not allow us
to infer a return value used to signal an error to its callers.

VI. IMPLEMENTATION AND EVALUATION

We have implemented our system on top of Intel’s Pin [20]
and IDA Pro [13] with around 4,000 lines of C++ code and
700 lines of Python code. Our system currently supports Linux
platforms, but due to the interoperability of the tools we use,
it can be extended for Windows platforms with minor effort.
We evaluated F-DETECTOR across the following dimensions:

• Correctness: Can F-DETECTOR detect the correct FS-edge
for disabling features?

• Security: Can F-DETECTOR neutralize vulnerabilities by
disabling functionality?

• Continuity: Can F-BLOCKER ensure continuity of the ap-
plication by defining an appropriate rescue point?

A. Setup and Benchmarks

To evaluate F-DETECTOR and F-BLOCKER, we ran exper-
iments using 9 real-world applications. The selected appli-
cations span a wide spectrum of families (servers, utilities,
shell programs, etc.). Among all the benchmark applications,
we disable 146 of their features, which we selected randomly

by studying their test suites and manuals. The features (i)
correspond to various functionalities and services; (ii) are acti-
vated by different types of inputs (command-line options, files,
network data, environment variables, configurations, and UI
clicks); (iii) are associated with various types of vulnerabilities.
The chosen applications and features are listed in Table III.
We also evaluate F-DETECTOR with Coreutils to allow for
comparison with RAZOR.

B. Correctness: Finding the Right FS-edge

To disable the selected features, we obtain inputs that
trigger them (IF) from test suites or define them based on
examples in their manuals. We generate other inputs (¬IF)
through minimally mutating the first according to the guidance
in §IV-A. If their are more than two inputs that activate the
feature we repeat our test with every possible combination
of input pairs. In each test, we prepare several mutations
(¬IF) of the used inputs based on our strategy. To test the
effect of using a different number (M) of mutations, we
test two setups M = 2 and M = 3. In each setup, when
doing majority voting among the edges obtained by different
mutations, we try out every combination of M -mutations to
determine an FS-edge, gaining an understanding about the
effects of using different mutations. For the 146 features, we
manually verify the correctness of each uniquely identified FS-
edge (i.e., whether they block F but no other feature). We
summarize the inputs and their mutations in Table IV.

1) Results Overview: The results of our experiment are
shown in Table V. For all tested features in IMAGEMAGICK-
UI, EVINCE, ZIP, NGINX, EXIM, and BASH, F-DETECTOR
found the correct FS-edge to fully disable the unwanted
feature under all setups. For a few feature-app pairs (apps
IMAGEMAGICK-file, EXIV2, and PROFTPD), we see that
in a few cases majority cannot be reached with M = 2,
but with M = 3. Eventually, majority is achieved with the
exception of BUSYBOX, where F-DETECTOR may err. Even
with BUSYBOX, for the majority of tested features (100), only
a small portion of combinations (0.5% when M = 3) provided
erroneous results. We will discuss the cause of errors later
in this section. Overall, the results indicate that F-DETECTOR
produces correct results for the majority of applications and
features.

2) Case Studies: To understand what prevented F-
DETECTOR from working correct in all cases, we performed an
in-depth analysis of the cases where majority was not reached
immediately or where there were errors. A similar analysis of
the features, where we did not face problems, is presented in
Appendix B.

• IMAGEMAGICK: We found that two of the GIF images in
the test suite included animations. When we converted them
to PNG (one of them) and TIFF (both of them) for use as
¬IF , they retained GIF-formatted data. Consequently, ¬IF
included inputs that still activated GIF-related functionality.
Essentially, by not understanding what is in the test suite
we employed, we did not correctly generate ¬IF .

• EXIV2: EXIV2 provides three different ways (essentially,
aliases) to activate F , as shown in Table IV, and it uses
two separate parser routines to process them. If we only
use two inputs that use the same parser, we cannot detect

9

TABLE IV. TEST CASES USED IN OUR EVALUATION.

Application Feature Inputs IF Mutations ¬IF

IMAGEMAGICK (file)

TIFF Libtiff5 test cases (33) tiff →{jpg, png, gif}
PNG libpng test cases (104) png →{tiff, jpeg, gif}
JPEG libjpeg test cases (8) jpeg →{tiff, png, gif}
GIF giflib test cases (3) gif →{tiff, png, jpeg}
SVG librsvg testcase (21) svg →{tiff, png, jpeg, gif}

IMAGEMAGICK (UI) 6 features Click button for the feature Click other buttons under same menu (5)

EVINCE 5 features
Click button for the feature;

Typing keyboard shortcut for the feature
Click other buttons under same menu (5);

Typing shortcut of other features (5)

BUSYBOX 105 features
e.g.

./busybox wget
e.g.

wget →{bunzip2, ping, ... 104 others}

EXIV2 5 features

e.g.
./exiv2 insert image;

./exiv2 in image;
./exiv2 -i a image

e.g.
insert →{delete, extract, ...};

in →{rm, ex, pr, mv};
-i a →{-d a, -e a, -p E, -r <fmt>};

ZIP 9 features
e.g.

./zip file.zip file.txt -T -TT=ls;
./zip file.zip file.txt -T –unzip-command=ls

e.g.
-TT →{-b, ... 8 others};

--unzip-command →{--temp-path, ... 8 others}

NGINX 4 features e.g. curl -X GET -D "" url e.g. GET →{PUT, MOVE, POST}
Chk. Enc. curl -H "Transfer-Encoding: Chunked" url Chunked →{Identify}

PROFTPD

CPFR {SITE CPFR /tmp/file} CPFR →{CPTO, CHGRP 777, CHMOD 777}
CPTO {SITE CPTO /tmp/file} CPTO →{CPFR, CHGRP 777, CHMOD 777}

CHGRP {SITE CHGRP 777 /tmp/file} CHGRP →{CPFR, CPTO, CHMOD 777}
CHMOD {SITE CHMOD 777 /tmp/file} CHMOD →{CPFR, CPTO, CHGRP 777}

EXIM Startup sct. -ps /path/to/script -ps →{-Ej, -bV, -dr, ... 6 others}
Enable in config file Disable in config file

BASH Env. func. x="() { :; }" x="{ :; }" →{"", "1"}

TABLE V. EVALUATION OF F-DETECTOR. CORR IS THE % OF
EXPERIMENTS WHERE THE CORRECT FS-edge IS DETECTED; NORES THE %
WHERE MAJORITY CANNOT BE REACHED; AND INCORR THE % WHERE AN
INCORRECT FS-edge IS DETECTED. FEATURES WITH IDENTICAL RESULTS

ARE COLLAPSED INTO THE SAME ROW.

App Feature M = 2 M = 3
Corr / Nores / Incorr Corr / Nores / Incorr

IM (file)

TIFF 100% / 0% / 0% 100% / 0% / 0%
PNG 100% / 0% / 0% 100% / 0% / 0%
JPEG 100% / 0% / 0% 100% / 0% / 0%
GIF 65% / 45% / 0% 72% / 28% / 0%
SVG 100% / 0% / 0% 100% / 0% / 0%

IM (UI) All (6) 100% / 0% / 0% 100% / 0% / 0%

EVINCE All (5) 100% / 0% / 0% 100% / 0% / 0%

BUSYBOX
100 feat. 91.5% / 9.3% / 0.2% 99.5% / 0% / 0.5%

5 feat. 0.1% / 7.4% / 92.5% 0.3% / 0% / 99.7%

EXIV2 5 feat. 67% / 33% / 0% 67% / 33% / 0%

ZIP All (9) 100% / 0% / 0% 100% / 0% / 0%

NGINX
4 feat. 100% / 0% / 0% 100% / 0% / 0%

Ch.-Enc. 100% / 0% / 0% —

PROFTPD

CPFR 33% / 67% / 0% 100% / 0% / 0%
CPTO 100% / 0% / 0% 100% / 0% / 0%

CHGRP 33% / 67% / 0% 100% / 0% / 0%
CHMOD 33% / 67% / 0% 100% / 0% / 0%

EXIM All (1) 100% / 0% / 0% 100% / 0% / 0%

BASH All (1) 100% / 0% / 0% —

the correct FS-edge where the paths converge. Instead an
erroneous edge is detected. Listing 3 shows the edge when

F is the insert command and rename is used as ¬IF .
Again, we have erred by not ensuring that IF includes all the
aliases of the command-line option we are trying to disable.
Nevertheless, majority voting protected F-DETECTOR from
making the wrong decision.

1 int Params::nonoption(const std::string& argv){
2 ...
3 if (argv == "in" || argv == "insert") {
4 ...
5 }
6

7 (\emph{conditional jump}).
8 if (argv == "mv" || argv == "rename") {
9 ...

10 }
11 ...
12 }

Listing 3. Erroneous edge in EXIV2, when using rename in ¬IF .

• PROFTPD: The FTP features we are testing belong
to two command categories [36]: Direct File Dupli-
cation (SITE CPFR/SITE CPTO) and Owner or Group
Change (CHGRP/CHMOD). CPFR and CPTO are essentially sub-
commands of the SITE command. PROFTPD parses all
SITE commands by sequentially calling a function that tests
each sub-command. Afterward another function tests for
CHGRP and CHMOD. Because of this uncommon pattern, no
FS-edge obtains majority when (i) CPFR and CPTO are used
as IF and ¬IF , respectively or (ii) when a command from
the second group is targeted as F using just mutations from
the first group. In this case, as well, the problem could be

10

avoided by carefully examining the available documentation
for the targeted features, as all variations would succeed,
if IF included commands both from the same and other
groups. Majority voting perseveres over this mistake.

• BUSYBOX: F-DETECTOR finds the correct FS-edge for
most of the features (100/105) in most of the tested combina-
tions. The FS-edge is routed on the same instruction because
it corresponds to an icall to the function implementing
the unwanted applet. The errors encountered occurs when
five applets (ping, traceroute, ping6, traceroute6, and
crontab) are used as inputs with other applets used as
mutations and vice versa. These five applets drop SUID
privileges, while others do not, which leads to erroneously
detecting an edge that deals with SUID as the FS-edge,
as shown in Listing 4. This edge disables all features
based on whether they require or drop SUID privileges.
If the mutation function generated ¬IF with the same
SUID requirements as IF , these errors could be avoided.
Essentially, the minimal mutation strategy is inadvertently
not working.

1 /* FS-edge is the true branch of the conditional statement
checking whether the applet needs privilege or not*/

2 if (APPLET SUID(applet no) == BB SUID REQUIRE) {

3 ... /* privileges needed in 104 applets*/
4 } else if (APPLET_SUID(applet_no) == BB_SUID_DROP) {
5 ... /* drop all privileges in 5 applets */
6 }

Listing 4. Wrong FS-edge in BUSYBOX (SUID-dropping applet in ¬IF).

3) Effects of Mutations and Inputs: Our evaluation reveals
that producing correct results can be influenced by the inputs
(IF) and mutations (¬IF) used to disable F . Note that prior
works are also affected by the type of test cases used, however,
this aspect is mostly ignored. Overall, we have learned the
following from evaluating F-DETECTOR:

• Increasing the number of mutations increases robustness.
• Simple inputs are better (e.g., non-animated GIFs).
• Using inputs (IF) that include all aliases of a command-line

option, protocol field, etc. increases robustness.

These rules-of-thumb augment the minimal mutation guide-
lines, we defined earlier.

4) When Mutations and Majority Voting Fail: Our tests
of BUSYBOX were extensive, disabling a large number of
applets and mutating each IF to all other available applets. Our
experiment revealed that, even though using multiple mutations
is beneficial, we should not sacrifice the minimal mutation
requirement for quantity. BUSYBOX provides numerous op-
tions for mutating a feature-activating test case. If we only
mutated to similar applets, e.g., file-utilities to file-utilities,
network-utilities to network-utilities and so on, errors could
be significantly reduced, if not eradicated.

C. Evaluating F-DETECTOR on Coreutils

As discussed in §II, the methodology used by approaches
like RAZOR can lead to over- or under-debloating. We test
F-DETECTOR on the same benchmark programs as RAZOR
data to determine, if we can remove features without similar
issues. We consider the features used for train in RAZOR as

the wanted features. We select some from the remaining ones
(not trained) as unwanted features to disable (listed in Table VI
in the appendix). In summary, we disabled 2 feat. in bzip2, 5
in chown, 10 in date, 8 in grep, 2 in gzip, 1 in mkdir, 3 in
rm, 10 in sort, 7 in tar, and 1 in uniq. After disabling each
of the unwanted features, we verify that the functionality is
fully disabled and none of the wanted features is affected. The
results show that F-DETECTOR disabled all features without
any over- or under-debloating problems.

D. Security Benefits of Feature Removal

To understand the security benefits of F-DETECTOR, we
tested whether we can effectively mitigate vulnerabilities as-
sociated with unwanted features by disabling them. First, we
prepared a proof-of-concept (PoC) input to trigger each of the
10 vulnerabilities listed in Table III. We ran the PoC against
the unmodified applications and on versions where the FS-edge
stops execution. In all cases, the FS-edge caused an application
exit, before the PoC reached vulnerable code.

To verify that the FS-edge completely mitigates the CVE
and not just the PoC, we manually analyzed each vulnerability.
We found that all the vulnerabilities lie in code only reachable
via the FS-edge. Below we present a detailed analysis of CVE-
2013-2028 (associated with the “Chunked Encoding” feature
of NGINX) and how it is mitigated by F-DETECTOR. Other
vulnerabilities are disabled in similar manner.

The vulnerability is a stack buffer overflow in function
ngx http parse chunked [30]. This function is called by
four functions:

1⃝ ngx http discard request body filter
2⃝ ngx http request body chunked filter
3⃝ ngx http proxy chunked filter
4⃝ ngx http proxy non buffered chunked filter

Listing 5 shows that ngx http parse chunked is only
called if r->headers in.chunked is true, in all cases. The
only location setting r->headers in.chunked to true is
the destination basic block of the FS-edge detected by F-
DETECTOR (shown in Listing 10). As our design guarantees
that the destination of the FS-edge is uniquely reachable
through it, setting r->headers in.chunked to true is dis-
abled and the vulnerability is neutralized.

1 int ngx_http_discard_request_body_filter(...){ 1
2 if (r->headers in.chunked) {
3 rc = ngx_http_parse_chunked(r, b, rb->chunked);
4 ...
5 }
6 }
7 int ngx_http_request_body_filter(...){
8 if (r->headers in.chunked) {
9 return ngx_http_request_body_chunked_filter(r, in); 2

10 }
11 ...
12 }
13 int ngx_http_proxy_input_filter_init(...){
14 if (u->headers in.chunked) {
15 u->pipe->input_filter =
16 ngx_http_proxy_chunked_filter; 3
17 u->input_filter =

ngx_http_proxy_non_buffered_chunked_filter; 4
18 ...
19 }
20 }

Listing 5. Control flow to reach CVE-2013-2028-related code.

11

E. Continuity of Service after Feature Removal

We finally tested whether F-BLOCKER can maintain the
continuity of server programs using the generated rescue
points with an existing software-self healing system, namely
REASSURE [25]. REASSURE, which was made available to
us by its authors, implements rescue points over Pin, using log-
based checkpoint and rollback. While it is limited in terms of
performance and scope of checkpoints, it enabled us to verify
the effectiveness of the generated RPs.

We applied F-BLOCKER on the FS-edge detected for NG-
INX’s PUT method (other methods can be handled similarly)
and for PROFTPD’s CPFT command. The RP for NGINX
is on function ngx epoll process events and returns
an error value of -1, while for PROFTPD it is on function
copy cpfr and it returns a NULL error value. In both
cases, when deploying the RPs the fault triggered by the FS-
edges is correctly virtualized allowing the services to continue
processing requests. In particular:

• ProFTPD returns error code 500 to the client that issued
the invalid command, along with a message that the com-
mand cannot be interpreted, and continues accepting new
connections.

• Nginx stops processing the request and returns to the main
serving loop. The user does not receive an error message,
but its connection is terminated.

For reference, we list all the RPs generated by F-BLOCKER
for all tested applications in Table VII in the appendix. Below,
we present our analysis of the NGINX and PROFTPD RPs.

1) NGINX: When a PUT request is received, the
FS-edge in ngx http process request line causes
a fault which triggers a rollback to the RP function,
ngx epoll process events, which is higher in the call
stack. The RP returns error code (-1), which was identified
through system call-based fault injection. As shown by the
function’s source code (line 4 in Listing 6), this is indeed
a valid error code returned by the function. Interestingly,
the caller of the RP, ngx process events and timers,
ignores its return value intentionally (line 11). However, by
design, ignoring the poll event corresponding to the PUT
request is sufficient to resume processing other sockets on the
next loop iteration, while the offending socket is eventually
closed and discarded.

1 static ngx_int_t ngx_epoll_process_events(...) {
2 ...
3 events = epoll_wait(...);
4 err = (events == -1) ? ngx_errno : 0;
5 ...
6 }
7 void ngx_process_events_and_timers(...) {
8 ...
9 /* ngx_process_events --> ngx_epoll_process_events */

10 (void)ngx process events(cycle, timer, flags);
11 ...
12 }

Listing 6. NGINX RP function for PUT method feature.

2) PROFTPD: When a CPFR command is received, the
FS-edge in copy cpfrm triggers a rollback to the beginning
of the RP function, which is also copy cpfrm. F-BLOCKER
determined that the RP returns pointers and assigned a NULL

error value to it. As shown in Listing 7, the RP indeed
returns a pointer (line 11), which is checked by its caller,
_dispatch, propagated to its own caller, and, eventually,
results in returning an error message to the user.

1 static int _dispatch(...) {
2 ...
3 mr = pr module call(c->m, c->handler, cmd);
4 ...
5 if (!mr && !success && validate) {
6 ...
7 success = -1;
8 }
9 return success;

10 }
11 modret_t *pr_module_call(...) {
12 /* func is a pointer pointing to copy_cpfrm */
13 res = func(cmd);
14 ...
15 return res;
16 }

Listing 7. PROFTPD RP function for CPFR command.

VII. RELATED WORK

A. Debloating at the Source-code Level

Perses [35] and C-Reduce [28] are the state-of-the-art
program reduction tools that build upon the concept of delta
debugging [37], [21]. By specifying a program to be min-
imized and an arbitrary property test function, these tools
return a minimized version of the input program that is also
correct with respect to the given property. Chisel [12] further
improves this approach, by leveraging reinforcement learning.
Via repeated trial and error, Chisel builds a model to determine
the likelihood of a candidate, minimal program to pass the
property test.

Chisel uses input-based specification similar to ours. How-
ever, it requires that inputs to activate all desired functionality
are defined. Generating high-coverage inputs to all desired
functionality is hard, as attested to by the low-coverage by
developer-written tests and the continuing efforts in improving
the coverage of fuzzing systems. In contrast, our approach just
needs a small number of inputs and a small set of guided
mutations. In addition, CHISEL utilizes statistical methods,
which may over fit the application to the test inputs and
aggressively remove actually needed functionality. Instead, F-
DETECTOR is geared towards disabling specific functionality
and thus, disables smaller targeted parts of the application.
Finally, CHISEL operates on source code. Unlike our ap-
proach, CHISEL is not appropriate for binary programs where
semantic information was stripped by compilation.

B. Debloating Java Bytecode

JRED [15] debloats Java applications and the Java Runtime
Environment. It operates on Java bytecode and performs con-
servative static analysis to understand reachability, followed by
binary rewriting to remove unreachable methods and classes.
JRED removes unused (instead of unwanted) functionality.
Jiang et al. [16] consider “the methods of interests” as seed
methods and define a feature as all call sites of the seed
methods. To cut a feature, they remove call sites of the seed
methods as well as the resulted redundancy. Correctness of
this approach heavily depends on the accuracy of the seed

12

methods, bringing significant burdens to users. Test-based
Software Minimization [8], [7] (TBSM) removes unwanted
functionality based on developer-defined, annotated test cases.
The authors, while working with developers, observed that
they “speak the language of tests fluently”, unlike that of
formal methods or architectural descriptions. Tests are, thus,
potentially more practical in defining unwanted functionality.
TBSM can remove arbitrary functionality from applications,
even if it is not directly connected to inputs. However, it does
require extensive test cases to be developed.

C. Debloating at the Binary-code Level

BlankIt [24] focus on activating library function on de-
mand, instead of removing unwanted functionality. BlankIt
runs static analysis to predict the call targets, which can result
in mispredictions hurting program functionality. BlankIt’s on-
demand loading of code leaves a window for attackers to load
needed code by hijacking control-flow and reusing trampo-
lines. BlankIt also imposes a significant run-time overhead,
even with programs that do not heavily use libraries. Instead
of directly working on the code, Quach et al. [27] approach
software debloating by relying on the compiler and the linker.
They first tailor the compiler to analyze dependencies across
components that are necessary to ensure execution. Then they
customize the loader to eliminate code disconnected to the de-
pendency graph. Similar to [27], Nibbler [2] de-bloats software
by removing unused functions from the linked libraries. The
difference is Nibbler only uses binary information.

Chen et al. [5] take definitions and approaches similar
to [16]. They require information of a seed function to uniquely
represent a feature and define constituent functions on the
paths leading to the seed function as the feature. They further
insert gates into the constituent functions pertaining to desired
features, which prevent the execution from escaping the gated
functions. A follow-up work [6] improves the identification
of constituent functions with symbolic execution, particularly
targeting network-based applications.

Ghaffarinia and Hamlen [9] assume that the users can
demonstrate desired features via unit tests. Using the sub-CFG
constructed in unit tests as a basis, they leverage machine
learning to derive a more complete, probabilistic contextual
CFG (a CFG that carries all permitted control flow transfers).
Finally, they statically instrument the binary to prevent devia-
tion from the contextual CFG. Razor [26] is another approach
to retain wanted features. Since we have discussed it in § II,
we omit the details.

Despite all aim to eliminate unwanted features, F-
DETECTOR has several differences from the above approaches.
First, F-DETECTOR directly removes the unwanted features
while those approaches retain the desired functionality. It is
more straightforward and feasible to gradually identify the list
of unwanted features than determining the desired features at
once. Second, those approaches require domain knowledge to
prepare a list of “seed functions” or a comprehensive corpus
of test suites. In contrast, F-DETECTOR only requires a few
inputs and several guided mutations from the user, posing less
burdens to the user.

More closely related to our work, Landsborough et al. [19]
develop several early-stage approaches to removing features,

considering the instruction traces following a specific group
of inputs as a feature. Technically, they collect instruction
traces with test inputs for both desired features and unwanted
features. They rewrite the code that is never reached with nops.
They also overwrite the code activated by unwanted features
but not desired features. These approaches largely rely on the
comprehensiveness of test inputs, which can easily result in
accidental removal of functional code.

D. Vulnerability Workaround

To mitigate vulnerabilities prior to patching, an orthogonal
approach of feature removing is vulnerability workaround.
Huang et al. propose TALOS [14] to create security
workarounds as a rapid response to disclosed vulnerabilities.
TALOS works by redirecting all execution paths that reach
the vulnerable code to built-in error handling code. Unlike our
approach that relies on dynamic information, TALOS relies on
static analysis to identify error-handling code within the ap-
plications. TALOS was later extended by RVM [38] to handle
binary-only programs. In comparison to TALOS and RVM,
our approach has the advantage of preventing functionality
loss. This is because TALOS and RVM block all execution
reaching the vulnerable code, regardless of the execution
contexts (where functionality is being used). In contrast, our
approach only disables the specific feature, without affecting
other functionality.

VIII. CONCLUSION

This paper presents a novel solution for disabling unwanted
features, as a means of reducing attack surface. Unlike previous
research that depends on burdensome user specifications to
determine all desired features, our solution only requires a
small set of inputs to activate the unwanted feature and
guided, minimal mutations on the inputs to avoid the unwanted
feature. We combine dynamic tracing on the provided inputs
and static analyses to identify a single control-flow edge
that dominates the feature as its entrance. Going beyond, we
leverage error virtualization to disable the unwanted feature
safely by redirecting execution on the feature entrance to built-
in error handling. This ensures the continuity of normal service
in the target program. We have implemented our solution on
the Linux platform and evaluated it with 146 features from
9 programs. Our solution detected and disabled all features,
under all settings, except for a few BUSYBOX features. This
demonstrates the utility of our solution in improving security
for a wide-range of binary applications and sheds light on
future research.

REFERENCES

[1] “The Heartbleed bug,” https://heartbleed.com/.
[2] I. Agadakos, D. Jin, D. Williams-King, V. P. Kemerlis, and G. Por-

tokalidis, “Nibbler: Debloating binary shared libraries,” in Proceedings
of the Annual Computer Security Applications Conference (ACSAC).
USA: ACM, December 2019, pp. 70–83.

[3] K. Arya, R. Garg, A. Y. Polyakov, and G. Cooperman, “Design
and implementation for checkpointing of distributed resources using
process-level virtualization,” in International Conference on Cluster
Computing (CLUSTER). USA: IEEE, 2016, pp. 402–412.

[4] R. Chandel, “Linux for Pentester : ZIP Privilege Escalation,” https:
//www.hackingarticles.in/linux-for-pentester-zip-privilege-escalation/,
2019.

13

https://heartbleed.com/
https://www.hackingarticles.in/linux-for-pentester-zip-privilege-escalation/
https://www.hackingarticles.in/linux-for-pentester-zip-privilege-escalation/

[5] Y. Chen, T. Lan, and G. Venkataramani, “DamGate: Dynamic adap-
tive multi-feature gating in program binaries,” in Proceedings of the
Workshop on Forming an Ecosystem Around Software Transformation
(FEAST). ACM, 2017, pp. 23–29.

[6] Y. Chen, S. Sun, T. Lan, and G. Venkataramani, “TOSS: Tailoring online
server systems through binary feature customization,” in Proceedings
of the Workshop on Forming an Ecosystem Around Software Transfor-
mation (FEAST). ACM, 2018, pp. 1–7.

[7] A. Christi, A. Groce, and R. Gopinath, “Resource adaptation via test-
based software minimization,” in 2017 IEEE 11th International Confer-
ence on Self-Adaptive and Self-Organizing Systems (SASO), 2017, pp.
61–70.

[8] A. Christi, A. Groce, and A. Wellman, “Building resource adaptations
via test-based software minimization: Application, challenges, and op-
portunities,” in IEEE International Symposium on Software Reliability
Engineering Workshops (ISSREW), 2019, pp. 73–78.

[9] M. Ghaffarinia and K. W. Hamlen, “Binary control-flow trimming,”
in Proceedings of the Conference on Computer and Communications
Security (CCS). ACM, 2019, pp. 1009—-1022.

[10] W. Glozer, “WRK: Modern HTTP benchmarking tool,” https://github.
com/wg/wrk, 2019.

[11] P. H. Hargrove and J. C. Duell, “Berkeley lab checkpoint/restart (BLCR)
for linux clusters,” Journal of Physics: Conference Series, pp. 494–499,
sep 2006.

[12] K. Heo, W. Lee, P. Pashakhanloo, and M. Naik, “Effective program de-
bloating via reinforcement learning,” in Proceedings of the Conference
on Computer and Communications Security (CCS). ACM, 2018, pp.
380–394.

[13] Hex-Rays, “The IDA pro disassembler and debugger,” https://www.
hex-rays.com/products/ida/, 2020.

[14] Z. Huang, M. DAngelo, D. Miyani, and D. Lie, “Talos: Neutralizing
vulnerabilities with security workarounds for rapid response,” in Sym-
posium on Security and Privacy (SP). IEEE, May 2016, pp. 618–635.

[15] Y. Jiang, D. Wu, and P. Liu, “JRed: Program customization and
bloatware mitigation based on static analysis,” in Proceedings of the
Annual Computer Software and Applications Conference (COMPSAC).
USA: IEEE, June 2016, pp. 12–21.

[16] Y. Jiang, C. Zhang, D. Wu, and P. Liu, “Feature-based software
customization: Preliminary analysis, formalization, and methods,” in
Proceedings of the International Symposium on High Assurance Systems
Engineering (HASE). ACM, Jan 2016, pp. 122–131.

[17] S. H. Kan, Metrics and Models in Software Quality Engineering.
Addison-Wesley Professional, September 2002.

[18] H. Koo, S. Ghavamnia, and M. Polychronakis, “Configuration-driven
software debloating,” in Proceedings of the European Workshop on
Systems Security (EUROSEC). ACM, 2019, pp. 9:1–9:6.

[19] J. Landsborough, S. Harding, and S. Fugate, “Removing the kitchen sink
from software,” in Companion Publication of the Annual Conference
on Genetic and Evolutionary Computation. USA: ACM, 2015, pp.
833–838.

[20] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,
V. J. Reddi, and K. Hazelwood, “Pin: Building customized program
analysis tools with dynamic instrumentation,” in Proceedings of the
Conference on Programming Language Design and Implementation
(PLDI). ACM, 2005, pp. 190–200.

[21] G. Misherghi and Z. Su, “HDD: Hierarchical delta debugging,” in
Proceedings of the International Conference on Software Engineering
(ICSE), 2006, pp. 142–151.

[22] N. P. Myhrvold, “The next fifty years of software,” http://hartenstein.
de/EIS2/next50years.pdf, 1997.

[23] S. Osman, D. Subhraveti, G. Su, and J. Nieh, “The design and imple-
mentation of zap: A system for migrating computing environments,”
SIGOPS Oper. Syst. Rev., vol. 36, pp. 361–376, Dec 2002.

[24] C. Porter, G. Mururu, P. Barua, and S. Pande, “Blankit library de-
bloating: Getting what you want instead of cutting what you don’t,”
in Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), 2020, pp. 164–180.

[25] G. Portokalidis and A. D. Keromytis, “REASSURE: A self-contained
mechanism for healing software using rescue points,” in Proceedings of

the International Workshop on Security (IWSEC). Berlin, Heidelberg:
Springer-Verlag, November 2011, pp. 16–32.

[26] C. Qian, H. Hu, M. Alharthi, P. H. Chung, T. Kim, and W. Lee,
“RAZOR: A framework for post-deployment software debloating,” in
USENIX Security Symposium. Santa Clara, CA: USENIX Association,
Aug. 2019, pp. 1733–1750.

[27] A. Quach, A. Prakash, and L. Yan, “Debloating software through piece-
wise compilation and loading,” in Proceedings of the USENIX Security
Symposium. USA: USENIX Association, Aug 2018, pp. 869–886.

[28] J. Regehr, Y. Chen, P. Cuoq, E. Eide, C. Ellison, and X. Yang, “Test-case
Reduction for C Compiler Bugs,” in Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI), 2012, pp. 335–346.

[29] S. Sankaran, J. M. Squyres, B. Barrett, V. Sahay, A. Lumsdaine,
J. Duell, P. Hargrove, and E. Roman, “The lam/mpi checkpoint/restart
framework: System-initiated checkpointing,” The International Journal
of High Performance Computing Applications, pp. 479–493, 2005.

[30] SecurityFocus, “Nginx ’ngx http parse.c’ Stack Buffer Overflow Vul-
nerability,” https://www.securityfocus.com/bid/59699, 2013.

[31] Selectel, “ftpbench,” https://github.com/selectel/ftpbench, 2014.
[32] H. Sharif, M. Abubakar, A. Gehani, and F. Zaffar, “TRIMMER:

Application specialization for code debloating,” in Proceedings of the
International Conference on Automated Software Engineering (ASE).
ACM, 2018, pp. 329–339.

[33] S. Sidiroglou, O. Laadan, C. Perez, N. Viennot, J. Nieh, and A. D.
Keromytis, “Assure: Automatic software self-healing using rescue
points,” in Proceedings of the 14th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems.
Association for Computing Machinery, 2009, p. 37–48.

[34] Standish Group, “CHAOS report 2009,” https://www.classes.cs.
uchicago.edu/archive/2014/fall/51210-1/required.reading/Standish.
Group.Chaos.2009.pdf, 2009.

[35] C. Sun, Y. Li, Q. Zhang, T. Gu, and Z. Su, “Perses: Syntax-guided
Program Reduction,” in Proceedings of the International Conference
on Software Engineering (ICSE), 2018, pp. 361–371.

[36] WinSCP, “Supported file transfer protocols,” https://winscp.net/eng/
docs/protocols, 2020.

[37] A. Zeller and R. Hildebrandt, “Simplifying and isolating failure-
inducing input,” IEEE Trans. Softw. Eng., pp. 183–200, Feb. 2002.

[38] H. Zhen and T. Gang, “Rapid vulnerability mitigation with security
workarounds,” in Proceedings of the Workshop on Binary Analysis
Research (BAR). Reston, VA, USA: ISOC, 2019.

[39] T. Zimmermann, N. Nagappan, and L. Williams, “Searching for a needle
in a haystack: Predicting security vulnerabilities for Windows Vista,”
in Proceedings of the International Conference on Software Testing,
Verification and Validation (ICST). IEEE, 2010, pp. 421–428.

APPENDIX A
EXAMPLES FROM RAZOR ANALYSIS

This section contains examples of the analysis we per-
formed on the coreutils programs debloated by RAZOR. We
show two types of failures: failures corresponding to over-
debloating (i.e., wanted functionality dropped). ; failures cor-
responding to under-debloating (i.e., unwanted functionality
preserved).

A. Required Functionality Dropped

We identify these cases by simply running the RAZOR
benchmarks provided by the authors. Some of the function-
alities and command line fails in the prepared tests although
they where used in the training cases.

chown-8.2 Fails on recursive mode if used on non-empty
directories.

./chown.org.debloat -R root:root d1/d1/d1/d1

14

https://github.com/wg/wrk
https://github.com/wg/wrk
https://www.hex-rays.com/products/ida/
https://www.hex-rays.com/products/ida/
http://hartenstein.de/EIS2/next50years.pdf
http://hartenstein.de/EIS2/next50years.pdf
https://www.securityfocus.com/bid/59699
https://github.com/selectel/ftpbench
https://www.classes.cs.uchicago.edu/archive/2014/fall/51210-1/required.reading/Standish.Group.
https://www.classes.cs.uchicago.edu/archive/2014/fall/51210-1/required.reading/Standish.Group.
https://www.classes.cs.uchicago.edu/archive/2014/fall/51210-1/required.reading/Standish.Group.
https://winscp.net/eng/docs/protocols
https://winscp.net/eng/docs/protocols

chown-8.2 Fails if multiple files used as input.

./chown.org.debloat root:root file1 file2

rm-8.4 Fails in recursive mode if used on non-empty directo-
ries.

./rm.org.debloat -rf root:root d1

tar-1.13 Fails on one of the input files from the Razor test
examples

./tar.org.debloat cf tmp.tar obj.bz2

B. Unwanted Functionality Included

We identify functionalities preserved in the debloated bi-
nary although they where not used in the training cases. To
identify these we explore the debloated program by testing
manually different untrained features.

date-8.21 some of the options for formatting the output
execute even though not present in the training test cases (note
that some of the untrained options are debloated).

./date.orig.debloated -d "1995-1-17" +%a

./date.orig.debloated -d "1995-1-17" +%b

./date.orig.debloated -d "1995-1-17" +%C

./date.orig.debloated -d "1995-1-17" +%e

./date.orig.debloated -d "1995-1-17" +%g

./date.orig.debloated -d "1995-1-17" +%n

./date.orig.debloated -d "1995-1-17" +%N

./date.orig.debloated -d "1995-1-17" +%z

./date.orig.debloated -d "1995-1-17" +%:z

./date.orig.debloated -d "1995-1-17" +%Z

grep-2.19 the option of printing the context of the
regex match (-NUM) executes even though not present
in the training test cases (note that options -CNUM and
--context=NUM which are alternatives of -NUM are debloated).
./grep.orig.debloated -1 [0-9] ../test2

mkdir-5.2.1 the verbosity option executes normally
even though not present in the training test cases.
./mkdir.orig.debloated -v -p d1/d2/d3

uniq-8.16 the options --zero-terminated
and --all-repeated execute normally even
though not present in the training test cases.
./uniq.orig.debloated --all-repeated=prepend file
./uniq.orig.debloated --all-repeated=separate file
./uniq.orig.debloated --zero-terminated file

APPENDIX B
ANALYSIS OF REMAINING FS-edges

IMAGEMAGICK-file: In the test of features supporting TIFF
/ SVG / PNG / JPEG, we detected the same, proper FS-edge
with any combination of 2-inputs and M -mutations. The FS-
edge, as shown in Listing 1 (in the paper), is an indirect
call to register the module responsible for the target format.
Removing the FS-edge prevents registration of the module and
thus, indeed disables the target format. Moreover, each module
is designated for the target format and therefore, removing the
FS-edge does not hurt other formats.

IMAGEMAGICK-UI: We detected the correct FS-edge for
every feature, using any combination of 2-inputs and M -
mutations. Listing 8 shows the FS-edges for the UI features we
disabled. It is an indirect jump from the switch checking the
UI click to the case implementing the corresponding action.
Cutting off the edge disables the feature without affecting the
others, providing both completeness and safety.

1 /* FS-edge is an indirect jump to a case in switch*/
2 static Image *XMagickCommand(...}
3 switch (command) {

4 case CropCommand: { // Crop image.
5 (void) XCropImage(display,resource_info,
6 windows,*image,CropMode,exception);
7 break;
8 }
9 case ChopCommand: {...} // Chop image.

10 case FlopCommand: {...} // Flop image scanlines.

11 case FlipCommand: {...} // Flip image scanlines.

12 case RotateRightCommand: {...} // Rotate image

13 case ShearCommand: {...}
14 ...
15 }

Listing 8. FS-edges in IMAGEMAGICK for the UI features.

EVINCE: For every feature in EVINCE, we detected the correct
FS-edge with any combination of 2-inputs and M -mutations.
The FS-edge is an indirect call to the function implementing
the feature. The related code is in Listing 9.

1 /*The source basic block is in the gnome library. The
feature-specific edge is a callback to the function
ev_window_cmd_file_print.*/

2 GActionEntry actions[] = {
3 { "print", ev_window_cmd_file_print },
4 ...%
5 };
6 ...
7 /* A gnome function registering the callback functions*/
8 g action map add action entries (ev window, actions) ;
9 ...

10 /* The callback function called by the gnome framework */
11 static void ev window cmd file print (...) { ... }

Listing 9. FS-edge in Evince for Print feature.

NGINX: By using any 2-inputs and M -mutations, we detected
the correct FS-edge for each feature supporting a HTTP request
method. The FS-edge, following the same pattern shown in
Fig. 3, checks the method and picks the proper handler. With
this edge cut off, the handler is no longer accessible and the
method is disabled. We also detected an FS-edge, shown in
Listing 10, to disable the “Chunked Encoding ” feature without
hurting other functionality (only one combination of 2-inputs
and 2-mutations is available in this case). The FS-edge is a
jump from a check of the size of the method name to a check
of the actual method name. By intuition, the FS-edge can be
unsafe since other method names may share the same length.
Fortunately, this did not happen because ”Chunked” is the only
method name with size of 7.

1 /* FS-edge is a jump from a check of the length of method name
to a check of the actual method name. "Chunked" is the
only method with size of 7.*/

2 ngx_int_t ngx_http_process_request_header(...){
3 ...
4 if (r->headers in.transfer encoding->value.len == 7 &&

15

5 ngx strncasecmp(r->headers in.transfer encoding

6 ->value.data,(u char *) "chunked", 7) == 0){
7 r->headers_in.content_length = NULL;
8 r->headers_in.content_length_n = -1;
9 r->headers_in.chunked = 1;

10 }
11 ...
12 }

Listing 10. FS-edge in NGINX for the ”Chunk-Encoding” feature.

ZIP: The tests with ZIP produced similar results to IM-
AGEMAGICK-UI. We detected the correct FS-edge for every
feature, regardless, no matter which 2-inputs and M -mutations
we used. The detected FS-edge for all the features follows the
same pattern in Listing 8: an indirect jump from the switch
checking the command line to the case implementing the target
feature.

EXIM: We detected the FS-edge shown in Listing 11 for
the “startup script” feature in EXIM, using any combination
of 2-inputs and M -mutations. The FS-edge is a conditional
jump to the code launching the startup script. With this jump
disabled, the “startup script” can no longer work but no other
functionality is affected.

1 /* FS-edge is a conditional jump to the code launching the
startup script. */

2 int main(int argc, char **cargv){
3 ...
4 if (opt_perl_at_start && opt perl startup != NULL){

5 errstr = init perl(opt perl startup);
6 .../*code handling Chunked Encoding’’*/
7 }

Listing 11. FS-edge in EXIM for the “startup script” feature.

BASH: We detected the FS-edge shown in Listing 12 for
the “defining functions by environment variable” feature in
BASH, with any 2-inputs and M -mutations. The FS-edge is
a conditional jump to the code reading and executing the
functions defined in the environment variable. Cutting off the
FS-edge will prevents execution of those function without
harm to any other functionality.

1 /* FS-edge is a jump to the code reading and executing the
function defined in the environment variable"*/

2 void initialize_shell_variables (...){
3 ...
4 if (privmode == 0 && read_but_dont_execute == 0 &&

STREQN ("() {", string, 4)){

5 string length = strlen (string) ;
6 ...
7 }
8 }

Listing 12. FS-edge in BASH for “functions in env. variables” feature.

APPENDIX C
OVERHEAD OF DEPLOYING RPS WITH REASSURE

We measured the overhead of REASSURE when deploying
our RPs using NGINX and PROFTPD to show that our RPs
are not more heavyweight than those proposed by prior works.
Note that REASSURE can incur significant overheads over
native execution, because it builds on Pin, however, it is ideal
for fast prototyping. In production environments, more efficient

checkpoint-rollback systems should be used [11], [29], [23],
[3], [33].

0

4

8

12

16

20

1KB 10KB 100KB

Native (1)
Pin (2)
REASSURE (3)

Page Size

R
e
q
u
e
st
s
(x
1
0
0
0
)
/
se
c

(a) NGINX

0

20

40

60

80

100

120

1MB 10MB 100MB

Native (1)
Pin (2)
REASSURE (3)

File Size

M
B

 /
 s
e
c

(b) PROFTPD

Fig. 6. Performance of NGINX and PROFTPD with and without REASSURE.
(a) We used WRK [10] to measure requests / second with different page sizes.
(b) We used ftpbench [31] to measure the throughput with different files
sizes.

We ran NGINX and PROFTPD on a 2-core Xeon E3-1270
V2 @ 3.50GHz Xen VM with 29GB of RAM (Debian 4.9.168-
1+deb9u5, Xen 4.1). The benchmark clients ran on another
host with a 4-core Xeon E3-1270 v6 @ 3.80GHz and 64GB of
RAM (Ubuntu 16.04.6 LTS), connected over 1Gb/s Ethernet to
the server. The client opens 10 simultaneous connections and
sends requests for 1 minute with random files of different size
(1KB, 10KB, and 100KB GET HTTP requests for NGINX and
1MB, 10MB, and 100MB RETR FTP requests for PROFTPD).
We used 2 threads for the NGINX client to saturate the server.
For comparison, we considered three different scenarios: (1)
running the application natively; (2) running the application
with Pin; (3) running the application with REASSSURE. The
experiments were repeated five times, and we show the mean
and standard deviation (SD) in Figures 6a and 6b.

In the NGINX evaluation with requests of small files (1KB),
REASSURE incurs x5.6 and x1.98 overhead, respectively
comparing to native execution and Pin. The overhead is
because the rescue point sits on a critical path, which is
activated in nearly every request. When the file size increases
to 100KB, we observed no significant overhead. This is
potentially because the bottleneck moves from the CPU to
the network and the frequency of requests is lower (but they
take longer). In the case of NGINX, REASSURE added no
observable overhead over Pin. The reason is that the rescue
point is not activated during the file transfer requests issued
by the benchmark, representing the best scenario.

To sum up, the overhead incurred by REASSURE depends
on the unwanted features and the correlation between the
unwanted features and other features. Even if significantly
faster checkpoint-restart is used, rescue points on the critical
path of the server are bound to incur some overhead. However,
in many cases unwanted features are in rarely executed code
and overhead will be minimal.

16

APPENDIX D
MISCELLANEOUS

TABLE VI. EVALUATING F-DETECTOR ON RAZOR’S BENCHMARK
DATA (COREUTILS). THE TABLE LISTS THE FEATURES TRAINED IN

RAZOR’S EXPERIMENTS AS THE WANTED FEATURES AND THE REMAINING
ONES (NOT TRAINED) AS UNWANTED FEATURES.

Application Wanted Features Unwanted Features

bzip2-1.0.5 --compress --decompress
--test

chown-8.2 --recursive,
--no-dereference

--changes
--verbose
--from
--reference
--no-preserve-root

date-8.21 +%c, +%d, +%D, +%F,
and 9 others

+%A
+%a
+%b
+%B
6 others

grep-2.19 --regexp,
--extended-regexp

--basic-regexp
--perl-regexp
--word-regexp
--line-regexp
4 others

gzip-1.2.4 --compress --decompress
--test

mkdir-5.2.1 --mode, --parents --verbose

rm-8.4
--recursive,
--force,
--interactive

--one-file-system
--no-preserve-root
--verbose

sort-8.16

--reverse,
--unique,
--zero-terminated,
--stable

--ignore-case
--month-sort
--numeric-sort
--random-source
6 others

tar-1.14 --create

--list
--extract
--compare
--append
3 others

uniq-8.16

--count,
--repeated,
--skip-fields,
and 4 others

--zero-terminated

TABLE VII. RESCUE POINTS GENERATED BY F-BLOCKER. FOR RP
DISTANCE PAIRS (A)/(B): THE VALUES CORRESPOND TO (A) THE DEPTH

OF THE FUNCTION CONTAINING THE FS-edge AND (B) THE DEPTH OF THE
RESCUE POINT FUNCTION IN THE CALL TRACE (DISTANCE FROM

libc start main()).

Fe
at

ur
e

R
P

D
et

ec
tio

n
E

rr
or

R
et

ur
ne

d
R

P
Fu

nc
tio

n
N

am
e

D
is

ta
nc

e
M

et
ho

d
IM

A
G

E
M

A
G

IC
K

(fi
le

)
6/

8
Po

in
te

r
re

tu
rn

0
(N

U
L

L
)

Ge
tM

ag
ic

kI
nf

o

IM
A

G
E

M
A

G
IC

K
(U

I)
3/

5
Sy

sc
al

l
fa

ili
ng

0
(o

ld
va

lu
e

=
1)

Di
sp

la
yI

ma
ge

Co
mm

an
d

E
V

IN
C

E
23

/2
8

Po
in

te
r

re
tu

rn
0

(N
U

L
L

)
g

ac
ti

on
gr

ou
p

ac
ti

va
te

ac
ti

on

E
X

IV
2

4/
4

Po
in

te
r

re
tu

rn
0

(N
U

L
L

)
Ac

ti
on

::
In

se
rt

::
cl

on
e

()

N
G

IN
X

7/
10

Sy
sc

al
l

fa
ili

ng
-1

(o
ld

va
lu

e
=

0)
ng

x
ep

ol
l

pr
oc

es
s

ev
en

ts

P
R

O
F

T
P

D
8/

8
Po

in
te

r
re

tu
rn

0
(N

U
L

L
)

co
py

cp
fr

B
U

S
Y

B
O

X
6/

6
Sy

sc
al

l
fa

ili
ng

1
(o

ld
va

lu
e

=
0)

wg
et

ma
in

E
X

IM
1/

1
Sy

sc
al

l
fa

ili
ng

1
(o

ld
va

lu
e

=
0)

ma
in

B
A

S
H

1/
3

Sy
sc

al
l

fa
ili

ng
1

(o
ld

va
lu

e
=

0)
ma

in

Z
IP

1/
1

Sy
sc

al
l

fa
ili

ng
1

(o
ld

va
lu

e
=

0)
ma

in

17

	Introduction
	Background and Motivation
	Reducing Attack Surface through Debloating
	Different Debloating Strategies
	Retaining Wanted Functionality
	Disabling Unwanted Functionality

	Retaining Functionality v.s. Disabling Functionality
	Limitations of Existing Solutions to Disable Functionality

	Design Overview
	Key Insight and High-level Idea
	Disabling Unwanted Features with F-detector
	Preparing Test Cases
	Detecting FS-edges
	Majority Voting On FS-edge

	Disabling F and Exploring Survivability with F-blocker

	F-detector
	Minimal Mutation of Feature Inputs IF
	Execution-Trace Collection and Processing
	Trace Normalization
	Profile Diffing
	Utility-Function Filtering

	FS-Edge Detection
	Detection Heuristics
	FS-Edge Detection in the Presence of Threads
	Majority Voting

	F-blocker
	Call-Trace Extraction
	Rescue-Point Generation
	Dominance Analysis
	Return-Value Analysis
	RP Selection

	Implementation and Evaluation
	Setup and Benchmarks
	Correctness: Finding the Right FS-edge
	Results Overview
	Case Studies
	Effects of Mutations and Inputs
	When Mutations and Majority Voting Fail

	Evaluating F-detector on Coreutils
	Security Benefits of Feature Removal
	Continuity of Service after Feature Removal
	Nginx
	ProFTPD

	Related Work
	Debloating at the Source-code Level
	Debloating Java Bytecode
	Debloating at the Binary-code Level
	Vulnerability Workaround

	Conclusion
	References
	Appendix A: Examples from Razor Analysis
	Required Functionality Dropped
	Unwanted Functionality Included

	Appendix B: Analysis of Remaining FS-edges
	Appendix C: Overhead of Deploying RPs with REASSURE
	Appendix D: Miscellaneous

